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CAPILLARY PE~ATION OF HYDROPHOBIC OIL-SATURATED ROCKS 

BY A SOLUTION OF AN ACTIVE ADMIXTURE 

V. M. Entov and N. Shyganakov UDC 532o685 

It is well known (see, e.g., [1-3]) that capillary permeation plays an important role in 
extracting oil from heterogeneous (layered-nonuniform, fractured-porous, and so on) strata. 
As a result of capillary permeation, water penetrates to the less permeable parts of the 
stratum, in which oil turns out not to have been displaced by frontal flooding. This mechan- 
ism assumes that water has better wetting ability than oil (i.e. the rocks are hydrophilic), 
and for this reason, under conditions of capillary balance, water predominately fills regions 
with small pores. In a number of cases, the rocks turn out to be hydrophobic as a result of 
adsorbing active components in oil on their surfaces and the process of capillary permeation 
cannot proceed, which decreases the oil recovery from the stratum. 

One of the means for increasing oil recovery in such cases is adding surfactants to the 
water that is pumped in [4, 5], which, being adsorbed on the surface of the porous framework, 
make the surface hydrophilic. Since the process of making the surface hydrophilic must precede 
permeation, the surfactant must be soluble to some extent (even a small extent) in oil. 

In the present work, we examine the simplest description of such a permeation process for 
an initially hydrophobic rock by a water solution of an active admixture that makes the rock 
hydrophilic. This case differs from the previously examined [6] problem of counterflow 
capillary permeation of a porous medium by a solution of an active admixture by the fact that 
it is necessary to take into account the solubility of the active admixture in oil and the 
change in the sign of the capillary pressure (the medium becomes hydrophilic); as will be 
evident from the results, the permeation rate in the case being examined depends in a charac- 
teristic way on the rate of the diffusion of the active admixture. 

i. We will write the equations for two-phase flow in aporous medium in the presence of 
an active admixture, assuming that local conditions for thermodynamic equilibrium between the 
admixture dissolved in water and in oil and that adsorbed by the porous medium are satisfied: 

ms, t  q-  div  ul  = O, d iv(u l  ~ u2) = O; ( 1 . 1 )  

[mcis  + m(l  -- s)c 2 + a], t 4- div (ciu i + c~u~) + d iv  q = 0; (1.2) 

cl = c, c~ = W(c), a = a(c, s), q = - - D v c ,  D = O(c ,  s); (i. 3) 
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u 1 . . . . . .  ~77... (,,;, c) V? i  ii =: '], 2); ( 1 . 4 )  

p~ - - p ,  - :  P~(s, c), ( 1 . 5 )  

w h e r e  s i s  t h e  w a t e r  s a t u r a t i o n ;  m i s  t h e  p o r o s i t y ;  k i s  t h e  p e r m e a b i l i t y  o f  t h e  p o r o u s  m e d i u m ;  

u i a r e  the phase percolation rates; e i are the admixture concentrations in the phases; a is 
the amount of admixture adsorbed; q is the diffusion transport of the admixture; D is the 
diffusion coefficient; Pi are the phase pressures; fi are the phase permeabilities; Pi are 
the phase viscosities; Pc is the capillary pressure; the index 1 refers to water and the index 
2 refers to oil. The equations presented above differ from the corresponding equations in 
[6] only by the fact that the solubility of the admixture in oil (c= # 0), characterized by 
an equilibrium function (c2 = ~,(c)), is taken into account. 

The problem of counterflow capillary permeation corresponds to one-dimensional rectilin- 
ear-parallel motion with the total percolation rate equal to zero: 

s = s ( z ,  t),  c = c ( z ,  t) ,  u~ = ( u .  O, 0),  u~ = - u . _  = U(x ,  t).  

At the same time, from Eqs. (1.1)-(1o5), it follows that 

~S Ou 
m-~ i - -F  ~ = O, 

[ m s T m ( t  s) e /  oc & ( c , s )  ~p, oc o ( o c )  
' - -  (c)l  T K  4 - . ,  ot q-  u [1 - -  (c)]  ex Oz D ~ , 

]," 1:/2 OPr 
u - -  ~*I 1*!1+ I2 Oz ' P~ = p~ (s' c)' ~t = ~2/~h. 

With natural initial and boundary conditions, 

s(x, O) = So, c(z, O) = co, s(O, t) = sO ,  c(O, ~) = cO 

the problem has a self-similar solution of the form 

2 = k I i / l t  ,~ = S (~), c = C (D,  ~ - -  x / a .  V T ,  a .  

where the functions S and C are solutions of the problem 

d [ dVe ] $ ds fl/.~ �9 

d~d ~ "v  d,=e~ -=' (s § (1 - -  s) ~'  (c)) a~ ~ 2 d~ T 

dP ] ~ ' dP de ds . ,~ ,. dP c OP 
_ _ _ t ! ' ~  - - 0 ,  g[,-- ~ 

@ ( ' 1 - -  [9'(c))~ d~ j d~ ----Oc d~ + es d~'  

40)  = ~o, s(oo) = so, c(O) = co, c ( ~ )  = e.. 

(1.6) 

( 1 . 7 )  

2. The problem (1.6) and (1.7) was solved numerically by allowing the phase permeabil- 
ities and capillary pressure reach stationary values using model functions described by the 

! . ".<'<._ j 
i r" - i] o 
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Fig. 1 
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expression 

a(c) = r~(c), ~(c) = bc, 
( s - - O . 2 ~ z [  l ~E~ { 0 . 8 _ _ s \ a ,  

IA (c - -  c*) (s - -  0 .2)  -2 ,  c > c*,  

Pc = / A  (c - -  c*) ( 0 . 8 "  ,.)-2, c < c*. 

In addition, the following values of the parameters were used in the calculations: 

fi = t ,  m - -  0 .2 ,  / = 200,  F : l ,  b = 0 .5 ,  A = t ,  P = i ,  

k : t D ,  Px : i c P  It 2 = 3 cP  c* = 0 ,3 .  

Some of the results of the calculations are shown in Fig. i, where the values D/a~ = i, 
0.7, and 0.3 correspond to the pairs of curves 1-3. In comparing with well-known results for 
pure capillary permeation [1-3] and results obtained previously for permeation of a hydro- 
philic specimen by a solution with an active ingredient [6], two circumstances stand out: the 
presence of a minimum in the water saturation distribution and concentration of a water satur- 
ation wave in the region of concentrations of the active ingredient exceeding a threshold 
value c* (the latter reflects the leading role of diffusion in permeation of a hydrophobic 
specimen). Both of the results indicated are comparatively easily interpreted qualitatively. 
In order to make such an interpretation, we replace Eq. (1.6) by a simpler model equation 

[ dP c \ 
d{ - -  

Assume, further, that s decreases significantly compared to S ~ for the same values of ~, 
for which c > c*. Then, the corresponding values of Pc will exceed the values of the capil- 
lary pressure at the inlet (E = O) and especially in the unperturbed zone (~ + ~). Thus, 
the expected distribution Pc(E) must have the form shown in Fig. 2 (curve 2); then, the 
saturation distribution, according to (2.15, must have a minimum (curve 3) and curve 1 illus- 
trates the concentration distribution. Actual calculations give the same picture (Fig. 3 
shows the capillary pressure distribution corresponding to curve 3 in Fig. i). From the 
physical point of view, the presence of a maximum in the curve Pc(E) has a simple meaning: 
in order that the process of capillary permeation proceed, it is necessary that the capillary 
pressure inside the specimen be higher than on the extremal surface of the specimen. The region 
of the maximum in capillary pressure acts like a pump, drawing in water and driving off oil. 
The appearance of a minimum in the saturation distribution is in fact related to the action 
of this pump: water from the depth of the specimen is drawn into the zone with maximum capil- 
lary pressure. 

The fact that capillary permeation is possible, if the capillary pressure inside the 
specimen exceeds the capillary pressure at the inlet, shows that the effective depth of 
capillary impregnation of a hydrophobic specimen is of the same order of magnitude as the 
penetration depth of the isotherm c = c* and, for this reason, depends in a decisive manner 
on the rate of diffusion transport. 
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Thus~ in choosing surfactants that can make a surface hydrophiiic (in contrast to sur- 
factants that simply increase the wettability of the rock by oil), special attention should 
be paid to the magnitude of the diffusion coefficient of the active s~bstanceo 
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DOUBLE EXPLOSION IN A PERFECT GAS 

E. I. Andriankin and N. N. Myagkov UDC 539.1 

Strong-explosion problems have now been examined in some detail. An analytic solution 
has been obtained [i], the self-modeling equations have been examined [1-3] and approximate 
and numerical methods have been developed [3-10]. It is of interest to apply a similar process 
to a double explosion which can be formulated as follows in the simplest case. At time t = 
--to there is an instantaneous release of energy E~ on a plane, on a line, or at a point 
(symmetry parameter ~ respectively i, 2, and 3). At time t = 0, there is a second explosion 

o of energy E 2 at the center of symmetry of the first explosion. We assume that the adiabatic 
parameters y behind the two explosion-wave fronts are identical, while the density po of the 
unperturbed gas is constant. The first wave is considered as strong. It is obvious that a 
self-modeling solution [i] applies to the flow between the awo fronts before they fuse (t 
tc) and at a large time after fusion (t ~ tc). The non-self-modeling flow behind the second 
shock wave can be described by numerical methods [4-6, 8-10]. Here we neglect the effects of 
dissipation, ionization, and radiation emission on the strong explosion. In spite of the 
simplicity of the formation, the problem is important to explosion theory, since there are two 

O O new control parameters % = E2/E: and to by comparison with the classical solution. 

After the second explosion and before the fusion (t ~ tc) , the flow in the region between 
the fronts is characterized by E~, Po, Y, ~, r, t and therefore is dependent on the single 
dimensionless variable n = r[E~t2/Po]-I/(~+2). To describe the flow behind the second front, 
it is necessary to have the parameters E~ and to, because here the flow ceases to be self- 
modeling and is dependent on the two independent variables n and r = t/to, as well as on the 
parameters %o, ~, y. Therefore, the calculation must be performed for each particular %o 
while to is considered as the time scale, by analogy with an explosion with counterpressureo 
We consider finite to < ~. In that case, the second wave always catches up with the first, 
since the latter is always strong and any C+ characteristic catches up with the front in a 
finite time. The occurrence of a double configuration of waves that do not fuse in practice 
is related to the counter pressure in the unperturbed gas, which results in a negative phase 
behind the first wave. 

The subscripts i, and 2, denote the quantities at the fronts of the first and second 
shock waves respectively. Subscript * denotes quantities at the front of the wave formed by 
fusion in the double explosion (resultant wave). 

i. Self-Modeling Stages~ During the initial instants (t <<to) after the second point 
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